Using flows to construct Hilbert space factors of function spaces
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولFunction spaces related to the Dirichlet space
H ·H := ̆ h = fg : f, g ∈ H ̄ = H ←↩ H is the product space of H2, by inner/outer factorization and Cauchy-Schwarz inequality. It is interesting, then, to find the dual space of H1. C. Fefferman [7] proved that, under the H2 paring (with some care), (H2 ·H2)∗ = (H1)∗ = BMO∩H(D) is the space of the analytic functions with bounded mean oscillation. The definition of BMO, born out of a problem in el...
متن کاملUsing Wearable Computers to Construct Semantic Representations of Physical Spaces
The representation of physical space has traditionally focused on keyphrases such as “Computer Science Building” or “Physics Department” that help us in describing and navigating physical spaces. However, such keyphrases do not capture many properties of physical space. As with the assignment of a keyword to describe a piece of text, these constructs sacrifice meaningful information for abstrac...
متن کاملOn Embedding of Finite Metric Spaces into Hilbert Space
Metric embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, statistics, and mathematical psychology, to name a few. The main criteria for the quality of an embedding is its average distortion over all pairs. A celebrated theorem of Bourgain states that every finite metric space on n points embeds in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1971
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1971-0283751-8